Dense Pack Cellulose Insulation

Dense Pack Cellulose Insulation: Methods and Verification of Density

National Weatherization Conference 2005

Rick Karg
rjkarg@karg.com

This is Dense Pack Cellulose!

Dense pack has a density of 3.5 pounds per cubic foot or more (well, 3.2 is probably OK).

Photo source: Jim Fitzgerald

High Density Cellulose . . .

- Has the greatest advantage in houses with leaky walls, especially walls where one cavity is connected to the next (plaster and lathe). High R-values and reduces leakiness significantly.
- Has less of an advantage in tighter dwellings with drywall and sheet sheathing. High R-values, but does not reduce leakiness very much.

What We Will Talk About

- Pros and cons of dense pack cellulose.
- Insulation blowing machines.
- Wall drilling.
- Installing dense pack cellulose.
- The delivery system.
- Tubing tips.
- Power quality.
- Safety.
- Verification of insulation quality.

Methods of Installing Cellulose

- Two-hole with nozzle.
 - Straight.
 - Directional or cup.
- One-hole with tubing.
 - Summer grade.
 - Winter grade.
 - More?

Cellulose Grades

- Cellulose insulation from most manufacturers is available in at least two grades that are characterized by the fire retardant.
- The fire retardants are usually 1) a mix of ammonium sulfate and boric acid or 2) boric acid only (termed “borate only”).
- Although it is about 7 to 10% more expensive, “borate only” grade is recommended because it is less corrosive.

© 2005 R.J. Karg Associates
rjkarg@karg.com
Dense Pack Cellulose Insulation: Methods and Verification of Density

Inspect and Evaluate House
- Use lead-safe practices.
- Conduct pre-weatherization blower door test.
- Inspect interior surfaces for holes and strength.
- Check for knob-and-tube wiring.
 - Check for voltage drop.
- Check for ducts or pipes in exterior walls.
- Check for location of electrical fixtures.
 - Respect all clearances.
- Watch for pocket doors.
- Check bathtub and plumbing openings.

Advantages and Disadvantages of Dense Pack Cellulose

Advantages of Dense Pack - 1
- No settling at top of cavity.
- Uniform R-value.
- Reduction of house CFM50.
- Usually less wall open-up and close-up time.
- Greater safety for installation crew.
- Quieter indoors.

Advantages of Dense Pack - 2
- Better equipment and equipment maintenance required – insulation blowing machine and delivery system.
- Higher degree of professionalism required – more knowledge, greater care. Pays back in the long term.

Disadvantages of Dense Pack - 1
- More insulation is installed, so more time required to blow (this might be outweighed by wall open-up and close-up time).
- Greater possibility of damaging interior wall material.
- Reduction in R-value (from 3.4 at 2.5 lbs/ft³ to 3.3 at 4.5 lbs/ft³), but insignificant.

Thermal Conductivity vs. Density

Vertical axis is inverse of R-value. For example, 0.3 is equivalent to an R-value of 3.33.

Source: ASHRAE Handbook of Fundamentals, 2001, p. 23.4
Disadvantages of Dense Pack - 2

- Requires higher quality equipment – insulation machine, generator, delivery system.
- Requires higher degree of equipment maintenance.

Green Advantages of Cellulose

- Is probably the greenest of insulations available. About 80% post-consumer recycled newspaper by weight.
- Lowest of major insulations in embodied energy both in Btu/lb. and Btu per insulating unit.
- Negligible pollution results from manufacturing.

Basic Concept # 1

- If you don’t have the EQUIPMENT and KNOWLEDGE to install insulation correctly in the first place, don’t expect to be able to do it.

Where to Insulate

Defining the Thermal Boundaries

Basic Concepts
Basic Concept # 2

If you don’t have a WRITTEN STANDARD by which to install insulation, you can’t expect you crews and contractors to achieve consistent high quality.

Basic Insulation Blower Types

- Through-the-fan, cellulose-only blower type.
- All-fiber blower, positive displacement air-lock type.
 - Can blow cellulose, fiberglass, or rock wool.
 - More powerful than cellulose-only types.
 - Examples include Intec Force 2 and Krendl

Insulation Blowing Machines

Krendl Blowing Machines

Model 2090

North Dakota Wx Trailer

Krendl 450

Krendl 590
Dense Pack Cellulose Insulation: Methods and Verification of Density

Krendl 200

“Bubble, bubble, toil and trouble…”

Intec Blowing Machines

Force

Force 2

Giesken Blowing Machines

Giesken 610

Giesken 510

PTO Insulation Machines, Unisul

Machine Metrics

- Capacity – pounds per hour of material.
 - Krendl 2000, 2400 to 3000 lbs/hr of cellulose.
- Number of blowers – 1 to 4 blowers.
- Static pressure level –
 - For dense pack a minimum of 2.9 psi or 80 IWC.
 - Measure air-only and then with agitator on also.
- Air flow
 - The more the air flow, more cellulose per hour, but not necessarily greater density.

Checking Static Pressure

Dwyer Magnehelic Pressure Gauges
Catalog #2205, 0 – 5 psi ($62), or Catalog #2150, 0 – 150 IWC ($62)

Dwyer Air Meter #460 ($27) for measuring air flow

Minimum of 2.9 psi or 80 IWC
Working Out of a Pickup

Inadequate power supply!
For most machines, about 8,000 Watts is good.

Machine Settings
- The air-to-material ratio is very important.
- Higher ratio will increase density.
- Higher ratio will reduce material throughput.
- Lower ratio will increase the chance of blockage in delivery system.
- The trick is to achieve dense pack with the maximum throughput, without clogging. This is easier to do with a good machine.

Machine Calibration
- Use this method to maximize material feed for a dense pack (only works on high quality machines).
- Set air on highest level that is appropriate for job.
- Increase material until delivery system clogs.
- Unclog delivery system and then set material feed back one notch.

Drilling to Install Cellulose
- Angle fill hole in the direction the tube will go.
- If tube will go up and down, angle fill hole up and down.
Dense Pack Cellulose Insulation: Methods and Verification of Density

Drilling
- Bits
 - Self-feed bits, 2 1/8 to 2 9/16 (Milwaukee, Lenox, DeWalt).
 - Carbide-tipped hole saw for interior drill, 2 1/2 inches.

Half-inch Drill with 2 1/8” Bit
- Self-feed bits

Drilling Walls
- Hole saws are slower, but cleaner

Where to Drill Fill Hole
- Bottom of cavity and fill up.
- Middle of cavity and fill up then down.
 - May fill down and then up, also.
- Top of cavity and fill down.
 - This can work well for tight walls (drywall) because the fill hole also acts as a pressure relief hole during the entire cavity fill.

Installing Dense Pack Cellulose

Requirements for Dense Blow
- Insulation machine with capacity.
- High quality power supply.
- Good insulation.
- Proper delivery system.
- Proper training and knowledge.
- Walls and ceilings that can withstand pressure.
Dense Pack Cellulose Insulation: Methods and Verification of Density

Installation of Dense Pack Cellulose

- Density of cellulose must be at least 3.5 pounds per cubic foot.
- Air-to-material ratio is very important.
 - Higher ratio increases density, but takes longer.
 - Lower ratio decreases density, but is faster.
- Must find right setting for machine, delivery system, weather, installer, and cellulose.
- Up-down or down-up with tube?

Blowing Walls

- Good
- Not Good

Probe 100% of Cavities

- For probing up and down
- For probing sideways

Dense Packing Wood Shingle Wall

Interior Cellulose Blow

- Don’t blow inside without lead testing.

Window Treatment, Interior/Exterior

Rick Karg, rjkarg@karg.com
Knee Wall Cellulose Blow

Bricks in the Wall?

Don’t ignore diagonal bracing

2nd Floor Perimeter Options

- Bag method at rim joist perpendicular to joists; on other two sides fill entire perimeter joist cavity.
- Drill and blow floor inside.
- Drill outside at rim joist and blow with directional (cup) nozzle.
- Others?

Cantilevered Rim Treatment

This blow went about 10 feet across the basement ceiling.

Bag Method for Rim Joists

Plug Fill Holes Before Replacing Siding

GOOD

BAD
Dense Packing Cathedral Ceilings

- Don’t dense pack complete cathedral ceilings in the north without mechanical ventilation operating continuously to keep indoor relative humidity to 35% or below during the winter.

Insulation Delivery System - 1

- System should be 100% leak-free.
 - Static pressure at end of delivery system should be the same as at the machine takeoff. If not, find the leaks.
 - Use double hose clamps and cut off tails rather than using duct tape.

Insulation Delivery System - 2

- Hoses.
 - Always use as large a hose diameter as possible for the job. This maximizes material throughput and minimizes friction.
 - Never use less than 50 feet of hose (3”), but over this, use as little as possible (2”).
 - Use double hose clamps and cut off tails.
 - Attach 1½ tube to 2 inch hose with a reducer.

Insulation Delivery System - 3

- Tubes (1 inch or 1½ inch inside diameter).
 - Tubes MUST be the proper rigidity for the job.
 - Transitions should be gradual.
 - Bevel cut on end should be with natural curve of tube.
 - Wider cavities require more rigid tubes.
 - For very rigid tubing, use thin wall ABS (natural gas line), but be careful of static electricity.
 - Experiment with tubing types and rigidities.
 - Don’t let tubes kink. Store in larger PVC pipes.

Delivery System Transitions

- Always lap transition joins properly
Dense Pack Cellulose Insulation: Methods and Verification of Density

Tubing

45° bevel cut should be with natural curve of tube.

Source: High Density Tubing Tips and Techniques, Chris Allwein, 2000, Ohio Wx Program

If You Know it Works, Use it . . .

Vacuum cleaner hose . . . but how do you know it works?

Operator Shut-off Valve or Not?

Cup (directional) nozzle and transition fitting

A Kinked Tube is a Bad Tube

A more rigid 1 ¼ inch inside diameter tube is inserted in the left cavity. This turgid tube is much less likely to bend downward than the flaccid tube in the right cavity, ensuring a better insulation density.

Maine Wx Experiments
Maine Wx Experiments

Rigid tube left, flaccid tube right

This photo shows the measured cellulose density in lb/ft\(^3\) at different heights in the cavities for the less rigid tube on the right and the more rigid tube on the left.

Note: Cavity on right was blown with a less rigid tube that curved downward.

Note: Krendl 2090 machine with air on 7 for both blowers and feed set at 3.

<table>
<thead>
<tr>
<th>Height</th>
<th>Density (lb/ft(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6 ft</td>
<td>3.6 lb/ft(^3)</td>
</tr>
<tr>
<td>3.1 ft</td>
<td>3.1 lb/ft(^3)</td>
</tr>
</tbody>
</table>

Hopper Filling

- For many machines, a full hopper – increased weight – increases the rate of feed through the delivery system. Force 2 is an example.
- Full hopper can lead to problems if power quality is bad. Rather than running a partially filled hopper, fix power problems.

Tubing Tips

- Drill fill hole within one foot of cavity bottom, or
- Drill fill hole at convenient spot for workers, perhaps siding course just under windows.
 - Fill up and then down (this is preferred).
 - Fill down and then up.

Tubing Tips – 1

- Use tubes that are long enough for the job – end of tube must reach to most distant spot.
- Cut an angle on the end of the tube.
- Use biggest i.d. possible, usually 1 1/4 inch.
- Rigidity of tube MUST be right for job.
Dense Pack Cellulose Insulation: Methods and Verification of Density

Tubing
- Have a variety of tubing on hand, 1 ¼” and 1”.
 - Two different summer grades (one braided).
 - Two different winter grades.
- Avoid PVC due to static electricity.

J&R Products, Inc.
4695 East 200 North
Craigville, IN 46731
1-800-343-4446

Applied Energy Products & Sales
3920 State Street
N. Canton, OH 44720
1-800-255-7996

Blowing Caveats

Things of Avoid with Dense Pack
- Insulation over recessed lights or heat sources.
- Unsafe wiring (knob-and-tube, open junction boxes, etc).
- Blowing against chimneys.
- Contact with soil or plumbing leaks.
- Flat or cathedral roofs in high moisture buildings in the north without control of humidity, airflow, and water.
- Walls without building paper or sheathing.
- High occupancy dwellings without mechanical ventilation.
- Blowing into ductwork.

Cellulose Blow on Recessed Light

Power Quality

Be Safe with Knob-and-Tube

Voltage drop <10%
Generators

- Minimum recommended Wattage is 8000, but check with blower man. (Krendl 2000, 9500 Watts for machine only.)

Check the voltage from your generator at the generator outlets AND at the end of your extension cords.

Karg has measured generator outlet voltage as low as 82 (should be at least 115).

This is hard on electric motors – tools – and reduces the capacity of your insulation machine.

Be Prepared for House Hookup

SEVCA in Vermont

North Dakota fun

Safety

- Use lead-safe and asbestos-safe practices.
- Use fiberglass ladders.
- Use ground fault electrical devices.
- Drill safety. Check interior for electrical fixtures before drilling.
Safety When Blowing – 2

- Brace yourself securely before drilling. The larger the bit the greater the torque and danger.
- Connect safely to house electrical supply.
- Wear good respirators; use eye, ear, and head protection.
- Be aware of the effects of carbon monoxide if using a generator.
- Don’t gas up generator while smoking.

Keep Generator Out of Box Truck

Karg has measured CO concentrations as high as 350 ppm in box trucks with generators running!
At least run exhaust pipe around corner to outside. Better yet...

Verification of Installation Quality

- Insulation density cases (machine setup only).
- Core sampling (density, not coverage).
- Insulation bag count (density and coverage, sort of).
- Digit test (density, not coverage).
- Infrared analysis (coverage only, not density).
- Blower door test, pre- and post-weatherization (air sealing characteristics only).
- Zone Pressure Diagnostics (air sealing characteristics only).

Insulation Density Cases

Designed and fabricated by Gary Roundy,
130 Underwood Circle, Kodak, TN 37764
865-932-2548

Core Sampling
Core sampling kit, including the copper tube, scale for weighing the core sample, and the conversion chart. Density chart is at end of handout.
Zone Pressure Diagnostics

- These methods can help us determine the leakage to a zone – an attic – before and after it is air sealed and insulated.
- If we divide the flow in CFM50 by 10, we know the approximate square inches of leakage.

Another Way to Determine Density

... but method does have disadvantages.

How Can We Improve?

- Manufacturer’s listing of takeoff pressures.
- Rigidity ratings for tubes.
- Upgrade our machines.
- Measure machine static pressure often.
- Maintain machines regularly and properly.
- Check quality of power to machines.
- Improve our installation methods.
- Calculate density frequently.
- Core sample for quality assurance.
- Learn each machine’s settings.

Resources

- Insulation machine manufactures.
- High Density Tubing Tips and Techniques, Chris Allwein, 2000, Ohio Wx Program.
- Insulation Density Cases – Gary Roundy, 130 Underwood Circle, Kodak, TN 37764, 865-932-2548.

Ammonium Sulfate Test

- Put a handful of cellulose into a cup filled with water and a teaspoon of Drano. If you smell ammonia, the insulation contains ammonium sulfate.

Thanks to Bill Hulstrunk for this test method tip.